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Abstract 

Weyl semimetals are topological materials whose electron quasiparticles obey the Weyl equation. They possess many 
unusual properties that may lead to new applications. This is a tutorial review of the optical properties and applica-
tions of Weyl semimetals. We review the basic concepts and optical responses of Weyl semimetals, and survey their 
applications in optics and thermal photonics. We hope this pedagogical text will motivate further research on this 
emerging topic.
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1 Introduction
Weyl semimetals are topological materials whose low-
energy excitations obey the Weyl equation [1, 2]. In 
a Weyl semimetal, the conduction and valence bands 
touch at discrete points in momentum space, called Weyl 
nodes. Weyl nodes are monopoles of the Berry curvature 
and are robust under generic perturbations. The qua-
siparticles near the Weyl nodes are analogous to Weyl 
fermions in high-energy physics [3]; they exhibit linear 
dispersion and well-defined chirality.

The nontrivial topology of Weyl semimetals leads to 
many unusual electronic, magnetic, thermal, and optical 
properties [2, 4, 5]. These intriguing features have been 
extensively studied in the literature. Besides these fun-
damental interests, Weyl semimetals may also enable 
new opportunities in practical applications. For example, 
photonic applications include compact optical isolators 
and circulators [6–8], orbital angular momentum detec-
tors [9, 10], higher-order harmonic generation [11–13], 
and nonreciprocal thermal emitters [14–16] among 
many others. However, such an application-oriented 

exploration is still at an early stage, which requires more 
joint efforts from scientists and engineers.

This text is a tutorial review of Weyl semimetals that 
should be of interest to researchers working in photon-
ics, applied physics, and optical engineering. We start 
with the basic concepts of semimetals and Weyl semi-
metals (Sect. 2). Then, we review the formalism of axion 
electrodynamics and derive the optical responses of Weyl 
semimetals (Sect.  3). Next, we survey the broad poten-
tial applications of Weyl semimetals in optics (Sect.  4). 
Finally, we discuss the applications of Weyl semimetals 
in thermal photonics (Sect. 5). We hope that our survey 
will motivate further exploration of photonic applications 
with Weyl semimetals.

2  Semimetals and Weyl semimetals
Weyl semimetals are a special class of semimetals. They 
exhibit common properties of semimetals as well as some 
unique characteristics. This section provides a brief intro-
duction to semimetals and Weyl semimetals. In Sect. 2.1, 
we review the basic concept and common properties of 
semimetals. We also discuss typical behaviors and mate-
rial examples of conventional semimetals. In Sect. 2.2, we 
review the basic concept and physical properties of Weyl 
semimetals.
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2.1  Semimetals
According to the band theory [17, 18], solids can be clas-
sified as insulators, semiconductors, semimetals, and 
metals (Fig.  1). An insulator or a semiconductor has a 
band gap between the valence and conduction bands; 
the band gap is larger for an insulator ( > 4eV ) than for 
a semiconductor ( < 4eV ). A semimetal has a very small 
overlap between the conduction and valence bands and 
a negligible density of states at the Fermi level. A metal 
has a partially filled conduction band and an appreciable 
density of states at the Fermi level.

Different band structures lead to different physical 
properties. For example, the carrier concentration is 
> 1022cm−3 for normal metals, ∼ 1017 − 1020cm−3 for 
semimetals, and ∼ 106 − 1013cm−3 for intrinsic semi-
conductors such as GaAs, Si, and Ge. Consequently, 
the electrical conductivities are ∼ 105 − 106�−1cm−1 
for normal metals, ∼ 104�−1cm−1 for semimetals, and 
∼ 10−8 − 10−1�−1cm−1 for intrinsic semiconductors 
[18].

Semimetals, the focus of our study, are probably the 
least known among the four types. An intrinsic semi-
metal has an equal number of electrons and holes. Like 
a normal metal, its conductivity increases as the temper-
ature is lowered. Like a semiconductor, it can be doped 
with proper impurities to vary the number of electrons 
and holes. Its electronic properties are also sensitive to 
pressure since pressure changes the internuclear dis-
tances, which sensitively changes the amount of band 
overlap and causes large changes in the carrier concen-
trations. Besides low carrier concentrations, semimetals 
typically have small effective masses and high dielectric 
constants. Nonmagnetic semimetals typically exhibit 
high diamagnetic susceptibilities and huge electron g-val-
ues [18].

A conventional semimetal is a “semiconductor” with a 
negative indirect bandgap (Fig. 2a). In an intrinsic semi-
metal, the bottom of the conduction band is slightly 
lower than the top of the valence band, and the Fermi 
level sits in between. Hence, the semimetal has charge 
carries of both types (holes and electrons). Typically, the 
pockets of electrons and holes are located at different 
positions in the wavevector space [18].

Classic examples of semimetals include the group 5A 
elements: arsenic, antimony, and bismuth [18]. They have 
five valence electrons per atom, so if there were one atom 
per primitive cell the material would be a metal. How-
ever, there are two atoms per primitive cell. With the ten 
valence electrons, the crystal could be an insulator but 
there is a small overlap in energy between the conduction 
and valence bands, resulting in semimetal behavior [19].

Another well-known semimetal is graphite. It consists 
of stacked layers of graphene. Since the interlayer bond-
ing is very weak, the band overlap is tiny [20]. Hence, 
graphite is a semimetal, and the Fermi surface consists 
primarily of tiny pockets of electrons and holes at dif-
ferent wavevectors, with carrier densities of around 
ne = nh = 3× 1018cm−3 [17].

2.2  Weyl semimetals
Weyl semimetals are a unique class of semimetals. 
Unlike conventional semimetals, in Weyl semimetals, the 
valence and conduction bands touch at discrete points in 
the wavevector space. Near the touching point, the band 
dispersion is linear (Fig. 2b).

Weyl semimetals are named after Hermann Weyl 
(1885-1955). In 1929, Weyl proposed the Weyl equation 
[21], which simplifies the Dirac equation for a massless 
relativistic spin 12 particle:

Here � is the reduced Planck constant, c is the speed 
of light, p = (px, py, pz) is the momentum operator, 

(1)i�
∂�

∂t
= Ĥ� = ±cp · σ�.

Fig. 1 Classification of solids. Schematic density of states (DOS) of 
insulators, semiconductors, semimetals, and metals. EF denotes the 
Fermi level

Fig. 2 Conventional versus Weyl semimetals. Schematic band 
structure for a conventional semimetals, b Weyl semimetals
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σ = (σx, σy, σz) is a vector whose components are the 
Pauli matrices, and � is a two-component field called a 
Weyl spinor [3]. The Weyl equation describes a massless 
particle with linear dispersion, called a Weyl fermion. The 
± sign reflects the existence of two types of Weyl fermi-
ons: right-handed ( + ) and left-handed (−). Hence, unlike 
the Dirac equation, the Weyl equation violates parity.

Physicists have been searching for Weyl fermions in 
nature. However, none of the observed elementary par-
ticles are Weyl fermions [2]. It was thought that neutri-
nos could be Weyl fermions. However, the discovery of 
neutrino oscillation in 1998 [22] shows that neutrinos are 
massive and thus cannot be Weyl fermions.

Despite their absence in high-energy physics, Weyl 
fermions may be realized in condensed-matter systems. 
In 1937, Conyers Herring proposed the concept of Weyl 
semimetals [1]. He realized that when two electronic 
bands cross accidentally, the generic band dispersions 
near a touching point are linear in all directions. In the 
simplest scenario, the effective Hamiltonian reads [23]:

where p is the momentum deviation from the touch-
ing point, and vF is the Fermi velocity. The resemblance 
between Eqs.  (1) and (2) is evident. As a result, these 
touching points are called Weyl nodes, and the quasipar-
ticles near them are reminiscent of Weyl fermions. Each 
Weyl point has a definite chirality, either right-handed 
( + ) or left-handed (−). For crystals where the wavevec-
tor space is the Brillouin zone and hence is compact, the 
Nielsen-Ninomiya no-go theorem asserts that left- and 
right-handed Weyl points always appear in pairs [24–27]. 
Hence, it is impossible that only a single Weyl point exists 
in the momentum space for solid state systems.

Weyl points are robust to generic perturbations: The 
Hamiltonian remains gapless while Weyl nodes move 
around. This is because for a Hermitian matrix, having 
a pair of coalescing eigenvalues is an effect with codi-
mension three; generically, one needs to tune three real 
parameters to realize such an effect. This fact, known as 
the von Neumann-Wigner theorem [28], explains why 
generically the accidental degeneracies of two bands 
only occur at isolated points in the three-dimensional 
momentum space and why such degeneracies persist 
under perturbation. From a topological perspective, the 
robustness of Weyl points can be understood from Berry 
curvature [29]. Berry curvature arises from the varia-
tion of the periodic part of the Bloch wave function with 
respect to wavevetors, and is mathematically analogous 
to a magnetic field in momentum space. Weyl points are 
monopoles of Berry curvature with quantized charges, 
which are analogous to quantized magnetic monopoles 

(2)Ĥ = ±vFp · σ

for magnetic fields. Weyl points can only be destroyed 
when two Weyl nodes of opposite chiralities are moved 
together and annihilated with each other.

For a Weyl semimetal, the existence of Weyl nodes in 
the bulk band structure leads to the presence of Fermi 
arc surface states when the Weyl semimetal is truncated. 
Such surface states correspond to an open Fermi arc that 
connects the projection in the surface Brillouin zone of 
two Weyl nodes of opposite chiralities. The existence of 
such surface Fermi arcs is protected by the nontrivial chi-
ral charge of the Weyl nodes [30, 31]. This is an example 
of the general principle of bulk-boundary correspond-
ence in topological materials.

Although the Weyl semimetal was theoretically pro-
posed many decades ago, its experimental demonstration 
was quite recent. A material must satisfy some necessary 
conditions to be a potential candidate for Weyl semi-
metals [32]. First, it must break either time-reversal or 
spatial inversion symmetry [2]. In a system that satisfies 
both time-reversal and spatial inversion symmetry, all the 
bands must be doubly degenerate in the whole wavevec-
tor space due to the Kramers’ degeneracy theorem [33]; 
this excludes the existence of Weyl nodes, which only 
appear as the accidental degeneracy of two non-degen-
erate bands. The minimum numbers of Weyl nodes are 
2 and 4 for Weyl semimetals that break time-reversal 
symmetry and inversion symmetry, respectively [34]. 
Second, the Weyl nodes must be located near the Fermi 
level, so that Weyl fermions may emerge as low-energy 
excitations.

Weyl semimetals were first discovered in 2015 [35–37] 
in non-centrosymmetric crystals, TaAs family (TaAs [35, 
36], TaP [38, 39], NbAs [40], and NbP [41–43]). Later, 
magnetic Weyl semimetals that break time-reversal sym-
metry have also been discovered [44–46]. A number of 
other Weyl semimetals have since been discovered, as 
reviewed in Ref. [47].

Weyl semimetals exhibit a rich variety of novel phe-
nomena. Besides surface Fermi arc states, they also 
exhibit chiral anomaly [48–50], unconventional charge 
and heat transport [43, 51], strain-induced axial gauge 
fields [52–54], novel collective modes [55], unusual 
magneto-optical conductivity [56–58], and so on. The 
properties of Weyl semimetals have been summarized 
in numerous reviews and monographs: For general 
overviews, see Refs. [2, 59, 60]; for electronic properties 
and carrier dynamics, see Ref. [4]; for magnetic proper-
ties, see Refs. [61–63]; for transport properties, see Refs. 
[64–69]; for topological properties, see Refs. [70, 71]; 
for ab initio calculation, see Ref. [72]; for experimen-
tal studies, see Ref. [73–76]; for material properties, see 
Ref. [47]. Complementary to these works, the present 
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tutorial review will focus on the optical properties of 
Weyl semimetals.

3  Optical properties of Weyl semimetals
In this section, we derive the linear optical properties of 
Weyl semimetals. We consider the simplest Weyl semi-
metal with two nodes separated by 2b in their wavevec-
tors and 2�b0 in their energy (Fig.  3a). The constitutive 
relations for such an ideal Weyl semimetal are:

The derivation of Eq.  (3) is the main aim of this sec-
tion. The expression of D has two terms; the first term 
is referred to as the Dirac term and the second the axion 
term. The Dirac term describes the permittivity of a cor-
responding Dirac semimetal (Fig. 3b), i.e.,  a Weyl semi-
metal with two overlapping Weyl nodes ( b = 0, b0 = 0 ). 
The axion term captures the effects of Weyl node sepa-
ration. Its name is taken from axion electrodynamics. Its 
first term represents the chiral magnetic effect, while the 
second term represents the anomalous Hall effect [2, 77].

In the following subsections, we provide a step-by-
step derivation of Eq. (3) and a closed-form expression of 
εD(ω) . Then we discuss their physical consequences. We 
use SI units and e−iωt convention.

3.1  A minimal low‑energy model of Weyl semimetals
According to the Nielsen-Ninomiya theorem [24–26], a 
Weyl semimetal always include an even number of Weyl 
nodes and the total chirality of all nodes must vanish. 
Hence, the simplest Weyl semimetal has a single pair of 
Weyl nodes. It can be described by the following minimal 
low-energy Hamiltonian:

(3)

D = εD(ω)E +
ie2

2π2�ω
(−b0B + b× E), H =

1

µ0
B.

which characterizes two Weyl nodes of opposite chiral-
ity that are separated by 2b in wavevector and 2�b0 in 
energy. Here b is also known as the chiral shift [4, 78], k 
denotes the wavevector, vF denotes the Fermi velocity, σ 
is the vector of Pauli matrices, and I is the 2× 2 identity 
matrix.

From Eq. (4), the band dispersion is determined as

where � = ±1 is the node’s chirality. Fig.  3 shows the 
scheme of band dispersion in the cases (a) b  = 0 and 
b0  = 0 and (b) b = 0 and b0 = 0 . The latter case, where 
the two Weyl nodes coalesce, is referred to as a Dirac 
semimetal.

We make a few remarks. First, the model is paradig-
matic and highlights the two hallmark properties of Weyl 
semimetals: linear dispersion and chiral Weyl nodes. 
Second, the model suffices to describe the universal 
low-energy phenomena in Weyl semimetals. It can be 
shown by explicit calculation that the general proper-
ties do not change if one uses a more realistic periodic 
two-band model [4, 79]. Third, nonzero b and b0 require 
the breaking of time-reversal and parity-inversion sym-
metries, respectively. Fourth, we note that the opposite 
sign convention of b and b0 has been used in some works 
[4]. Finally, we note that the ideal magnetic Weyl semi-
metal with the minimum number of Weyl points may be 
realized in real materials such as K 2Mn3(AsO4)3 [80], or 
EuCd2As2 subjected to an external magnetic field [81].

3.2  Axion electrodynamics
To characterize the electromagnetic properties of the 
Weyl semimetal as described by Eq.  (4), we first briefly 
review the Lagrangian approach to Maxwell’s equations 
[82]. We start with the conventional Maxwell Lagrangian 
density:

Here, the potentials φ(r, t) and A(r, t) are the independ-
ent variables; the electric field E(r, t) and the magnetic 
field B(r, t) are expressed in terms of potentials:

Equations  (7) already imply two of the four Maxwell’s 
equations:

(4)

H(k) =

(

�vFσ · (k + b)− �b0I 0
0 − �vFσ · (k − b)+ �b0I

)

,

(5)E�(k) = −��b0 ± �vF |k + �b|,

(6)L0(r, t) =
ǫ0

2
E2 −

1

2µ0
B2 − ρφ + J · A.

(7)B = ∇ × A, E = −∇φ −
∂A

∂t
.

Fig. 3 A minimal low-energy model. Schematic band dispersion for 
a a Weyl semimetal, b a Dirac semimetal. In a, the blue and red lines 
correspond to right- and left-handed quasiparticles; the blue and red 
dots denote the right- and left-handed Weyl nodes. In b, these lines/
dots coalesce
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We define the action

and require S0 to be stationary with respect to the varia-
tions of φ(r, t) and A(r, t) . Then we obtain the other two 
of the four Maxwell’s equations:

See Ref. [82, §24] for detailed derivation of Eq. (10).
Now, we introduce the formalism of axion electrody-

namics [83]. Axion electrodynamics was first proposed 
in high-energy physics to solve the strong CP problem 
in quantum chromodynamics [84]. In condensed matter 
physics, axion electrodynamics is used to understand the 
properties of 3 He [85], topological insulators [73, 86–88], 
and Weyl semimetals [79, 89–91]. For Weyl semimetals, 
axion electrodynamics describes the topological effects 
of Weyl node separation. The usage of axion electrody-
namics in Weyl semimetals will be discussed in the next 
subsection.

Axion electrodynamics is generated by adding to 
Eq. (6) an additional term (the θ term) [83, 92]:

where α = e2

4πǫ0�c
 is the fine structure constant, and 

θ(r, t) is a pseudoscalar field. Now

This does not modify Eqs. (8), but changes Eqs. (10) into 
(see Ref. [93] for detailed derivation):

These modified Maxwell’s equations contain most 
(although not all) of the new physics of axion electro-
dynamics [94]. Here we note that the θ term enters the 
equations only through derivatives. This is as expected 
since if θ is constant [95], the θ term is a total derivative 
and irrelevant for the equation of motion.

(8)∇ · B = 0, ∇ × E +
∂B

∂t
= 0.

(9)S0 =

∫

dt d3r L0(r, t),

(10)∇ · E =
ρ

ǫ0
, ∇ × B = µ0J +

1

c2
∂E

∂t
.

(11)Lθ = 2α

√

ǫ0

µ0

θ

2π
E · B,

(12)S =

∫

dt d3r [L0(r, t)+ Lθ (r, t)].

(13)∇ · E =
ρ

ǫ0
− 2cα∇

(

θ

2π

)

· B,

(14)

∇ × B = µ0J +
1

c2
∂E

∂t
+

2α

c

[

∂

∂t

(

θ

2π

)

B + ∇

(

θ

2π

)

× E

]

.

There is a different yet equivalent way to describe axion 
electrodynamics [95], where one keeps the macroscopic 
Maxwell’s equations in their original form:

with the modified constitutive relations:

There is yet another way to describe axion electrodynam-
ics if θ(r, t) satisfies the additional condition:

Then one can express Maxwell’s macroscopic equations 
in the frequency domain:

with the constitutive relation [96]:

Such a description is equivalent to the previous two 
under the assumption of Eq.  (18). It will be useful later 
when we discuss Weyl semimetals.

3.3  The axion term
It is known that the effects of Weyl node separation are 
fully described by an axion term

Substituting Eq.  (22) into Eq.  (21) and replacing ε0 with 
εD(ω) , we obtain Eq. (3). (Note that Eq. (22) satisfies the 
assumption of Eq. (18).)

The above result is standard; its derivation is beyond 
the scope of this tutorial. We only note that the deriva-
tion uses Fujikawa’s method in the fermion path integral 
formulation; the θ term corresponds to the chiral anom-
aly, a type of quantum anomalies that arises from a non-
trivial Jacobian in the change of path integral variables. 
We refer readers to Ref. [79] for the original derivation of 
Eq. (22), Ref. [97] for fermion path integrals, Ref. [98] for 
quantum anomalies and Fujikawa’s method, and Ref. [99] 
for chiral anomaly in interacting systems.

(15)∇ · B = 0, ∇ × E = −
∂B

∂t
,

(16)∇ ·D = ρ, ∇ ×H = J +
∂D

∂t
,

(17)

D = ǫ0E + 2αcǫ0
θ

2π
B, H =

1

µ0
B − 2α

1

cµ0

θ

2π
E.

(18)∇

[

∂θ

∂t
(r, t)

]

= 0.

(19)∇ · B = 0, ∇ × E = iωB,

(20)∇ ·D = ρ, ∇ ×H = J − iωD.

(21)

D = ε0E + 2αcε0
1

−iω

[

∂

∂t

(

θ

2π

)

B+ ∇

(

θ

2π

)

× E

]

, H =
1

µ0
B.

(22)θ(r, t) = 2b · r − 2b0t.
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3.4  The Dirac term
Now we derive the Dirac term εD(ω) in Eq.  (3), i.e., the 
permittivity of a Dirac semimetal (Fig.  3b). The Dirac 
semimetal can be described by a simple two-band 
Hamiltonian:

while the spin degeneracy is taken into account by a 
degeneracy factor g = 2.

From the Hamiltonian Eq.  (23), we obtain the low-
energy spectra:

where s = ±1 denote the band indices. The eigenstates 
are:

where ϑ and ϕ are respectively the polar and azimuthal 
angles of the three-dimensional k.

Then εD(ω) can be determined by the standard linear 
response theory [100, 101]:

where εb is the background permittivity due to the other 
bands and σ(ω) is the dynamic conductivity tensor due to 
the Dirac cone. Assuming noninteracting electrons and 
local response, σ(ω) is given by Kubo-Greenwood for-
mula [6, 102]:

Here α,β = x, y, z , ω is the incident light frequency, V is 
the volume, v̂α = 1

�

∂HD
∂kα

= vFσα is the velocity operator, 
|ks� and |ks′� are the initial and final electronic state, and

is the Fermi distribution where EF is the Fermi energy 
and T is the temperature.

Since the Hamiltonian Eq.  (23) is isotropic in k , the 
conductivity tensor σ(ω) is also isotropic and can be 
treated as a scalar. Detailed calculation shows [6]:

(23)HD = �vFk · σ ,

(24)Ek ,s = s�vF |k|,

(25)

|k ,+� =

(

cos ϑ
2

eiϕ sin ϑ
2

)

, |k ,−� =

(

− sin ϑ
2

eiϕ cos ϑ
2

)

,

(26)εD(ω) = εb + i
σ(ω)

ω
,

(27)

σαβ(ω) =
−ie2g�

V

∑

k ,s,s′

n(Ek ,s)− n(Ek ,s′)

Ek ,s − Ek ,s′

�ks|v̂α|ks
′��ks′|v̂β |ks�

�(ω + i0)+ Ek ,s − Ek ,s′
.

(28)n(E) =
1

e(E−EF )/kBT + 1

(29)σ(ω) =
e2

�

gkF

24π
�G̃(�/2)+i

e2

�

gkF

24π2

{

4

�

[

1+
π2

3
(
kBT

EF
)2
]

+ 8�

∫ εc

0

G̃(ε)− G̃(�/2)

�2 − 4ε2
εdε

}

,

where kF = EF/�vF , � = �(ω + iτ−1)/EF , τ−1 is the 
Drude damping rate, εc = Ec/EF , and Ec is the cutoff 
energy beyond which the band dispersion is no longer 
linear. Moreover, the function G̃(x) in Eq. (29) reads:

The physical meaning of Eq.  (29) is more transparent 
in the low-temperature limit when kBT ≪ EF . Then 
G̃(�/2) → �(�− 2) where �(·) is the Heaviside step 
function, and thus:

For the real part of σ(ω) , the step function captures the 
interband absorption when E > 2EF . For its imaginary 
part, the first term is the Drude term due to the intra-
band transition, while the second term is the correction 
due to the interband transitions.

3.5  Giant optical nonreciprocity
Now we can discuss one unique property of magnetic 
Weyl semimetals: giant optical nonreciprocity without 
an external magnetic field. Reciprocity is a fundamen-
tal internal symmetry of Maxwell’s equations [103–
107]. It imposes direct constraints on basic optical 
phenomena including transmission [108], reflection 
[109], absorption, and emission [110, 111]. Conversely, 
breaking reciprocity enables significant new opportu-
nities in photonic applications such as isolation [112, 
113], circulation [114], robust topological transport 
[115, 116], and violation of Kirchhoff ’s law of thermal 
radiation [117, 118].

Optical materials with significant nonreciprocal 
responses are rare. The most used ones are magneto-
optical materials [119]. Under an external magnetic field, 
this type of material has an asymmetric dielectric tensor 
ε  = εT that breaks reciprocity ( εT denotes the transpose 
of ε ). The strength of nonreciprocal effects depends on 
the degree of asymmetry of ε [119]:

(30)

G̃(x) ≡ n(−xEF )− n(xEF ) =
sinh (xEF/kBT )

cosh (EF/kBT )+ cosh (xEF/kBT )
.

(31)

σ(ω) =
e2

�

gkF

24π
��(�− 2)+ i

e2

�

gkF

24π2

[

4

�
−� ln

4ε2c
|�2 − 4|

]

(32)γ =

∥

∥ε − εT
∥

∥

∥

∥ε + εT
∥

∥

,
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where � · � denotes the matrix norm. For magneto-optical 
materials,

where ω is the light frequency, ωc = eB/m∗ is the cyclo-
tron frequency, m∗ is the effective electron mass, e is the 
electron charge, and B is the external magnetic field [117, 
119]. For the typical magnetic field B ∼ 1T , ωc ∼ 1THz , 
thus γ ∼ 0.001-0.01 at optical frequencies. Therefore, 
the nonreciprocal effect is weak in magneto-optical 
materials.

In contrast, magnetic Weyl semimetals can exhibit 
extremely large nonreciprocal responses, with γ ∼ 1 
at optical frequencies. As an illustration, we consider a 
Weyl semimetal with b along the z-direction and b0 = 0 
(Fig. 4a). It has a permittivity tensor:

where εD(ω) is given by Eqs. (26) and (29), and

The permittivity tensor ε(ω) has the typical form of a 
gyrotropic medium [119]. Following Ref. [6], we use 
the parameters εb/ε0 = 6.2 , ξc = 3 , g = 2 , τ = 1000fs , 
b = 2× 109/m , vF = 0.83× 105m/s , T = 300K , and 
EF = 0.15eV . Fig. 4b plots the calculated εD and εa . The 
magnitude of εa is comparable to εD over a broad fre-
quency range. Hence γ ∼ |εa/εD| ∼ 1 . Such a strong 
nonreciprocity originates from the anomalous Hall effect 
induced by the Weyl node separation [2, 4, 120]. This 
mechanism is fundamentally different from the cyclotron 

(33)γ ∼
ωc

ω
,

(34)ε(ω) =





εD iεa 0
−iεa εD 0
0 0 εD



 ,

(35)εa(ω) =
be2

2π2�ω
.

mechanism for magneto-optical materials. In particular, 
it requires no external magnetic field.

3.6  Electromagnetic waves in the bulk medium
The strong gyrotropy significantly affects the behavior of 
light in magnetic Weyl semimetals. As the first example, 
we study the electromagnetic waves in the bulk medium 
as described by ε(ω) in Eq. (34). The results will be useful 
later in discussing many applications.

We consider the Voigt configuration, i.e., the wavevec-
tor k is in the plane perpendicular to the axis of gyration 
b . Such a configuration is mirror symmetric with respect 
to that plane, thus waves can be decoupled into TE and 
TM modes [121]. TE/TM modes have the electric/mag-
netic fields parallel to b ; their dispersion relations can be 
expressed as:

where we have introduced the Voigt permittivity for TM 
modes as:

Fig. 4c plots the calculated εV (ω) with the parameters as 
described in Sect. 3.5.

We note that the gyrotropic medium behaves differ-
ently for the two modes due to the different permittivity 
components: εD for TE modes in Eq. (36) and εV  for TM 
modes in Eq. (37). Moreover, the two permittivities have 
different frequency dependence. For TE modes, εD is 
not affected by the gyrotropy (Fig. 4b). It monotonically 
increases with the frequency and has a plasma frequency 
ωp . For TM modes, εV  is affected by the gyrotropy 

(36)TE: k2 = ω2µ0εD(ω),

(37)TM: k2 = ω2µ0εV (ω).

(38)εV (ω) = εD −
ε2a

εD
.

Fig. 4 Permittivity of a magnetic Weyl semimetal. a Band structure of a Weyl semimetal with a chiral shift 2b . b εa and the real part of εD in 
the permittivity tensor of Eq. (34). ε0 denotes the vacuum permittivity. c The real part of the Voigt permittivity εV in Eq. (38). The regions where 
Re(εV ) > 0 are shaded by color. Figures a, b are reproduced with permission from Ref. [14]. Copyright 2020 American Chemical Society
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(Fig. 4c). The existence of the chiral shift 2b splits εV  into 
two branches which are separated by ωp . In each branch, 
εV  monotonically increases with the frequency and has 
an effective plasma frequency ωp− and ωp+ , respectively. 
Consequently, when ωp− < ω < ωp , Re(εD) is negative 
while Re(εV ) is positive; when ωp < ω < ωp+ , Re(εD) is 
positive while Re(εV ) is negative.

3.7  Nonreciprocal surface plasmon polaritons
As the second example, we study the surface plasmon 
polaritons of a Weyl semimetal [96]. The results will also 
be useful for later applications.

We consider a planar interface between air and a semi-
infinite magnetic Weyl semimetal with a chiral shift 2b 
along the z direction parallel to the interface (Fig.  5a). 
Such an interface supports nonreciprocal surface plas-
mon polaritons, whose band dispersion along the x direc-
tion is determined by: [6, 122]

where k0(ω) = ω/c is the wavenumber in vacuum, kx is 
the x-component of the wavevector, ky0 =

√

k2x − k20  and 
ky =

√

k2x − ǫV k
2
0  are the y-component of the wavevec-

tor in air and in the Weyl semimetal, respectively. The 
last term in Eq. (39) shows that when the sign of kx flips, 
the frequency of the surface plasmon polaritons will be 
different, i.e., ω(kx)  = ω(−kx) . The asymmetry of the dis-
persion is induced by the gyrotropy; it occurs only when 
εa  = 0.

Fig. 5b shows the calculated band dispersion of the sur-
face plasmon polaritons, together with the continuum 

(39)ky + εV ky0 − kx
εa

εD
= 0 ,

region of bulk modes (in light blue) and the light cone of 
vacuum (in light gray). We note that the surface plasmon 
polaritons approximately occupy the frequency ranges 
ω < ωp− and ωp < ω < ωp+ ; the bulk modes occupy the 
frequency ranges ωp− < ω < ωp and ω > ωp+ . This is as 
expected from the frequency dependence of εV  in Fig. 4c. 
The dispersion of the surface plasmon polaritons is 
clearly asymmetric near the effective plasma frequencies 
ωp− and ωp+ . Away from the effective plasma frequen-
cies, the dispersion becomes approximately symmetric. 
The frequency range where the dispersion is evidently 
asymmetric measures the strength of nonreciprocity. The 
plots confirm the strong nonreciprocity of a magnetic 
Weyl semimetal without an external magnetic field. As a 
comparison, to obtain a similar strength of nonreciproc-
ity, conventional magneto-optical materials, such as InSb, 
need an unrealistically large external magnetic field of 
about 100T [7, 14]. This is consistent with our order-of-
magnitude comparison of γ in Sect. 3.5.

3.8  Tunable Fermi level
Another unique property of Weyl semimetals is the large 
tunability of the Fermi level EF (also referred to as the 
chemical potential). The variation of the Fermi level can 
significantly affect the optical conductivity according to 
Eq. (29). This leads to greatly tunable optical phenomena. 
The Fermi level of a Weyl semimetal can be adjusted in 
different ways. Below we discuss two approaches.

First, the Fermi level can be tuned by electric gating. 
This is because an undoped Weyl semimetal features a 
vanishing density of states at the energy of Weyl points. 
Therefore, the carrier concentrations are much lower 
than metals and thus are more easily depleted. Second, 

Fig. 5 Nonreciprocal surface plasmon polaritons. a An interface between air and a magnetic semimetal. b Dispersion relation of the surface 
plasmon polaritons. The gray region shows the light cone of the vacuum. The blue region shows the continuum of the propagating modes in 
the bulk. kF = EF/�vF is the Fermi wavevector. c The temperature dependence of the chemical potential EF (T ) . Figures b, c are reproduced with 
permission from Ref. [14]. Copyright 2020 American Chemical Society
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the Fermi level can be tuned by thermal tuning. This is 
because a Weyl semimetal has a small and nonconstant 
density of states and a linear dispersion. Consequently, its 
Fermi level is strongly temperature dependent. The Fermi 
level as a function of temperature can be calculated from 
the requirement of charge conservation [123]:

Fig. 5c shows EF (T ) , where we set EF (0) = 0.163 eV such 
that EF (300K) = 0.150 eV. Note that EF (T ) decreases as 
T increases. Consequently, the dielectric tensor and opti-
cal properties of the Weyl semimetal are also tempera-
ture dependent.

3.9  Effects of Fermi arcs
As we mentioned in Sect.  2.2, Weyl semimetals feature 
not only Weyl nodes in the bulk band structure but also 
Fermi arc surface states. The existence of Fermi arc sur-
face states can modify the boundary conditions of Max-
well’s equations, which can affect the optical properties 
of Weyl semimetals. Depending on the problems, the 
modification may be negligible in some cases but may be 
significant in other cases.

So far, we have focused on the optical effects that arise 
from the nontrivial bulk electronic states in Weyl semi-
metals. Now we point to some works that highlight the 
optical effects of Fermi arcs. Ref. [124] provides a semi-
classical approach to understanding surface Fermi arcs 

(40)EF (T ) =

21/3
(

9EF (0)
3 +

√

81EF (0)6 + 12π6k6BT
6

)2/3

− 2π231/3k2BT
2

62/3
(

9EF (0)3 +

√

81EF (0)6 + 12π6k6BT
6

)1/3
.

in Weyl semimetals. Ref. [125] provides a detailed calcu-
lation of optical properties of Weyl semimetals includ-
ing the effects of both bulk states and Fermi arc surface 
states, and compares their contributions to bulk and sur-
face conductivity tensors. Refs. [126, 127] study “Fermi 
arc plasmons” that originate from the hybridization of 

collective modes associated with Fermi arc carriers and 
bulk carriers. Such an unusual surface plasmon mode 
exhibits a hyperbolic band dispersion [128]. Ref. [129] 
systematically studies both the bulk plasmons and the 
Fermi-arc plasmons over opposite surfaces of a Weyl 
semimetal slab.

3.10  Type‑II Weyl semimetals
Above we have discussed the simplest Weyl semimetal as 
described by the Hamiltonian (4). It has two Weyl cones 
that are isotropic in all k directions and are upright in the 
(k ,E) space (Fig. 4a). None of these features are generic. 
A Weyl semimetal may have multiple pairs of Weyl cones 
that are anisotropic in different k directions and are tilted 
in the (k ,E) space. A more general low-energy Hamilto-
nian near a Weyl point is [130]

(41)H(k) = �

3
∑

i,j=1

vijkiσj + �

3
∑

i=1

aikiI

Fig. 6 Type-I and Type-II Weyl semimetals. a A type-I Weyl cone. b A type-II Weyl cone. The grey plane corresponds to the Fermi level. Figure is 
reproduced with permission from Ref. [130]. Copyright 2015 Springer Nature
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where ki is measured from the Weyl point, vij represents 
the anisotropic Fermi velocity, and the coefficients ai ’s 
are responsible for the tilting of the Weyl cone. From the 
Hamiltonian (41), the band dispersion is determined as

When ai ’s are small enough, the iso-energy contours 
are elliptic, shrinking to a point (the Weyl point) when 
E = 0 . Such a Weyl cone is called type-I (Fig. 6a). When 
ai ’s are large enough, the iso-energy contours become 
pairs of hyperbola, touching at a point (the Weyl point) 
when E = 0 . Such a Weyl cone is called type-II (Fig. 6b). 
The transition between the type-I and type-II occurs 
when the cone tips over. The condition for this so-called 
topological Lifshitz transition [131–133] is

The first proposed Type-II Weyl semimetal is WTe2 
[130]. It has a 3D layered structure with single layers of 
W separated by bilayers of Te. Band structure calculation 
shows that the crystal possesses 8 Weyl cones of type-II 
[130, 134]. Experiments confirm this prediction [135–
137]. Later many other type-II Weyl semimetals are dis-
covered [138–142].

Type-II Weyl semimetals exhibit many unusual physi-
cal properties that differ from those of Type-I Weyl semi-
metals [130, 143, 144]. As an example of unusual optical 
properties, we discuss the hyperbolic surface plasmon 
polaritons in WTe2 [145]. Hyperbolic surface plasmon 
polaritons are propagating modes at the metal-dielectric 
interface with a hyperbolic isofrequency contour in the 
wavevector space [146–149]. Such modes can exhibit 
high directionality and extremely large density of states. 
Most existing hyperbolic plasmonic surfaces are real-
ized by artificial subwavelength structures [146, 149]. 
However, for these artificial surfaces, the upper bound 
of the achievable plasmon wave vector is limited by the 
periodicity of the structure [150]. This calls for a natural 
hyperbolic plasmonic surface without any structuring 
[151].

In Ref. [145], Wang et al. experimentally demonstrate a 
natural hyperbolic plasmonic surface based on thin films 
of WTe2 in the far infrared range ( 16− 23µm ). They 
show that the in-plane dielectric tensor of WTe2 is ani-
sotropic and can change sign as energy varies in the far 
infrared range. Consequently, the iso-frequency contour 
of the surface plasmon polaritons changes from an ellipse 
to a pair of hyperbola as energy varies in that wavelength 

(42)E(k) = �

3
∑

i=1

aiki ± �

√

√

√

√

√

3
∑

i,j,k=1

vikvjkkikj .

(43)detM = 0, where Mij =

3
∑

k=1

vikvjk − aiaj .

regime. This study demonstrates that a type-II Weyl sem-
imetal can naturally host 2D hyperbolic plasmons, which 
is of interest for controlling light-matter interaction and 
light emission in planar photonics.

4  Photonic applications and devices
In this section, we survey various photonic applications 
of Weyl semimetals. These applications utilize nontrivial 
linear and nonlinear optical effects of Weyl semimetals. 
For each application, we discuss both the physical mech-
anism and the device configuration.

4.1  Linear optical effects
4.1.1  Nonreciprocal optical components
Nonreciprocal optical components, such as isolators 
[113], circulators [152], and nonreciprocal waveguides, 
are crucial in many photonic applications including opti-
cal circuits [153, 154], and lasers [155]. As we discussed 
in Sect. 3.5, magnetic Weyl semimetals can exhibit giant 
optical nonreciprocity without an external magnetic field 
[6, 96] thanks to the anomalous Hall effect [44–46, 77, 
81, 156]. Hence, magnetic Weyl semimetals can be used 
to construct efficient and compact nonreciprocal optical 
components. Here, we review three examples of nonre-
ciprocal optical components based on magnetic Weyl 
semimetals.

In Ref. [6], Kotov et  al.  design a nonreciprocal wave-
guide using magnetic Weyl semimetals. As shown in 
Fig.  7a, the structure consists of a Weyl semimetal thin 
film sandwiched by two dielectrics. The chiral shift 2b is 
along the x direction. Fig.  7b shows the dispersion dia-
gram of the TM-polarized light propagating in the y 
direction. The structure supports two different types of 
guided modes depending on the light frequency ω : When 
ω < ωp− or ωp < ω < ωp+ , the structure supports nonre-
ciprocal surface plasmon polaritons; when ωp− < ω < ωp 
or ω > ωp+ , the structure supports nonreciprocal wave-
guide modes. Such behavior is similar to that shown in 
Fig.  5b and is as expected from the frequency depend-
ency of εV  in Fig.  4c. The dispersions of these guided 
modes can be tuned via gating between the THz and 
mid-IR ranges. In Ref. [157], Halterman et  al.  discuss 
waveguide modes in Weyl semimetals with tilted Weyl 
cones.

In Ref. [7], Asadchy et al. design optical isolators in the 
mid-IR range using magnetic Weyl semimetals, with both 
Faraday and Voigt geometries. The Faraday isolator con-
sists of a Weyl semimetal slab sandwiched by two twisted 
polarization filters and operates at the normal inci-
dence. The chiral shift 2b is along the direction perpen-
dicular to the slab. The Voigt isolator (Fig. 7c) is a finite 
one-dimensional photonic crystal with a three-layer unit 
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cell consisting of Weyl semimetal, dielectric, and Weyl 
semimetal; the chiral shifts of the two Weyl semimetal 
layers are both parallel to the slab but in the opposite 
directions. Such a structure is designed for optical iso-
lation at oblique incidence. It breaks all the symmetries 
that preclude isolation [158]. Numerical results show 
that three unit cells suffice to achieve high isolation and 
low insertion loss. Remarkably, the total thickness of the 
device is less than 1.4 times the operation wavelengths, 
and is three orders of magnitude smaller than that of 
conventional isolators based on magnetooptical materi-
als. Fig.  7d shows the calculated power transmittance 
spectra in the forward and backward directions at the 
incident angle of θ = 45.6◦ . The two spectra are signifi-
cantly different. Near the resonance frequency, the device 
achieves greater than 30dB isolation and less than 1.2dB 
insertion loss. In Ref. [159], Li et al. demonstrate a similar 
isolation performance using a one-dimensional photonic 
crystal containing a defect layer made of magnetic Weyl 
semimetals.

In Ref. [8], Park et  al.  design a photonic crystal slab 
structure made of magnetic Weyl semimetal and silicon, 
which can achieve optical isolation at normal incidence 
without the need for polarizers. As shown in Fig. 7e, the 
structure consists of a photonic crystal slab and a uni-
form dielectric slab separated by an air gap. The total 
thickness of the device is less than the operational wave-
length. Such a structure hosts guided resonances [160] 
that can greatly enhance the nonreciprocal effects. Fig. 7f 
shows the calculated power transmission and reflection 
spectra for the TM polarized light in the forward and 
backward directions. The spectra exhibit high contrast 
near the guided resonance.

4.1.2  Polarization filters
Due to the giant gyrotropy of magnetic Weyl semimet-
als, the left and right circularly polarized light propagat-
ing along the chiral shift direction will acquire different 
phases and attenuation [161]. Such effects can be used 
to construct polarization filters. In Ref. [162], Chtch-
elkatchev et  al. demonstate that a single magnetic Weyl 

Fig. 7 Nonreciprocal optical components. a, b A nonreciprocal waveguide based on magnetic Weyl semimetals. a The geometry consists of a 
Weyl semimetal film surrounded by two semi-infinite dielectrics. b The light dispersion at the waveguide. The red lines ( SPP> ) and blue lines ( SPP< ) 
denote the forward and backward nonreciprocal surface plasmon polaritons, respectively. The cyan regions denote the nonreciprocal waveguide 
modes. c, d A Voigt isolator based on magnetic Weyl semimetals. c The geometry consists of three unit cells. Each unit cell comprises three material 
layers. The dark and bright grey layers are made of Weyl semimetals with opposite chiral shifts as indicated by the yellow arrows. The yellow layer is 
made of crystalline silicon (c-Si). The blue and red arrows denote forward and backward illuminations, respectively, at an incident angle θ = 45.6◦ . 
d The transmittance spectra in the forward (blue) and backward (red) directions. Also shown is the isolation ratio (green). e, f An isolator based on 
a photonic crystal slab made of Weyl semimetal and silicon. e The geometry consists of a photonic crystal slab made of Weyl semimetals (green) 
and silicon (gray) and a uniform silicon slab separated by an air gap. f The reflectance and transmittance spectra in the forward (red) and backward 
(blue) directions. Figures are reproduced with permission from a, b Ref. [6], Copyright 2018 American Physical Society; c, d Ref. [7], Copyright 2020 
John Wiley and Sons; e, f Ref. [8], Copyright 2021 American Chemical Society
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semimetal slab can selectively transmit/reflect circularly 
polarized light in the Faraday configuration, and linearly 
polarized light in the Voigt configuration (Fig. 8a). In Ref. 
[163], Yang et al. design a circular polarizer using two lay-
ers of magnetic Weyl semimetals separated by an air gap. 
The chiral shifts of the two Weyl semimetals are paral-
lel and perpendicular to the slab. The proposed device 
exhibits a high circular polarization efficiency and high 
average transmittance in the wavelength region from 
9µm to 15µm at incidence angles up to 50◦ . In Ref. [164], 
Mukherjee et  al.  study the effect of a tilt of the Weyl 
cones on the absorption of left and right circular polar-
ized light. They show that the difference in absorption 
depends strongly on the degree of tilt.

4.1.3  Negative refraction
Negative refraction refers to the counter-intuitive phe-
nomenon where light is refracted at a negative angle with 
respect to the surface normal [165]. Negative refraction 
is related to exotic phenomena such as perfect lensing 
[166]. There are several known routes to achieving nega-
tive refraction. The original approach proposed by Ves-
elago [165] requires the use of a negative index material 
where both the permittivity and the permeability are neg-
ative. Such “double-negative” materials have been experi-
mentally demonstrated by metamaterials [167]. Negative 
refraction has also been achieved in photonic crystals 

[168–170]. Another approach utilizes the magnetoelec-
tric effect in chiral media [171–173], which has also been 
experimentally confirmed using chiral metamaterials 
[174].

Weyl semimetals can provide a new route to negative 
refraction using natural materials. As we discussed in 
Sect.  3.6, TM-polarized light can propagate in a mag-
netic Weyl semimetal with the Voigt configuration when 
ωp− < ω < ωp or ω > ωp+ . In the lower frequency range, 
the light can propagate in the bulk below the plasma 
frequency ωp . This phenomenon is typical for any gyro-
tropic system in the Voigt configuration [6, 121] and 
is related to the modification of εV  by the gyrotropy as 
shown in Fig. 4c. Interestingly, this phenomenon is also 
accompanied by negative refraction. In Refs. [175, 176], it 
is shown that TM-polarized light in the lower frequency 
range propagates with opposite signs of phase and group 
velocities. Hence the light exhibits a negative refractive 
index (Fig. 8b). Although such negative refraction can be 
observed in any gyrotropic media, magnetic Weyl semi-
metals can exhibit the phenomena over a much broader 
bandwidth without any external magnetic field. These 
predictions still await experimental confirmation.

Although not the focus of this paper, we point out that 
similar negative refraction for electrons can also occur in 
a Weyl semimetal [177, 178]. The phenomenon of nega-
tive refraction for electrons is similar to that for photons, 

Fig. 8 Polarization filters and negative refraction. a A circular polarization filter made of a magnetic Weyl semimetal slab in the Faraday 
configuration. The device can selectively transmit one circular polarized light and reflect the opposite circular polarized light. b The negative 
refraction of TM-polarized light in a Weyl semimetal with the Voigt configuration. St is the transmitted Poynting vector. k i , kr , and kt are the incident, 
reflected, and transmitted wavevectors, respectively. c A scheme of a scanning tunneling microscope (STM) with a probing tip built from three 
Weyl semimetal layers. These three layers act as an electronic Veselago lens. The electron flow from the top layer is focused on a small spot in the 
bottom layer. The tight focus may increase the spatial and temporal resolution of the STM. Figures are reproduced with permission from a Ref. [162], 
Copyright 2021 Elsevier; b Ref. [175], Copyright 2017 the Physical Society of Japan; c Ref. [177], Copyright 2017 American Physical Society
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although the physical mechanisms are different. Such an 
effect can be used to construct a three-dimensional elec-
tronic Veselago lens. In Ref. [177], Hills et  al. design an 
electronic Veselago lens made of three layers of different 
Weyl semimetals. They propose to use such a lens as a 
probing tip for scanning tunneling microscope (STM) to 
significantly improve its spatial and temporal resolution 
(Fig. 8c). In Ref. [178], Tchoumakov et al. design a three-
dimensional electronic Veselago lens made of a single 
Weyl semimetal. Such a Veselago lens is based on chiral 
anomaly and can selectively focus electrons of a given 
chirality.

4.2  Nonlinear optical effects
So far, we have only discussed the linear optical effects of 
Weyl semimetals. These phenomena can be understood 
in the context of linear response theory [100, 179], as we 
have demonstrated in Sect. 3. Weyl semimetals can also 
exhibit pronounced nonlinear optical effects [180]. These 
phenomena must be understood in the context of nonlin-
ear response theory [181]. Nonlinear responses of topo-
logical materials have only been investigated recently [11, 
182–190]; a systematic discussion is beyond the scope 
of this paper. Instead, we survey some nonlinear optical 
effects and applications of Weyl semimetals.

4.2.1  Photogalvanic effect
One of the simplest nonlinear optical effects in a solid 
is the photogalvanic effect. It refers to the generation of 
the direct current (DC) in the crystal under exposure to 
light. In the context of nonlinear optics [191], the photo-
galvanic effect is a second-order nonlinear optical effect: 
A direct current can appear in a noncentrosymmetric 
solid due to an oscillating electric field when one analyzes 
the response up to (at least) second order in the applied 
field [192]. At this order of perturbation theory, the DC 
photocurrents J  are the sum of three contributions [193, 
194]:

where the three terms are referred to as “injection”, “shift”, 
and “anomalous” current contributions in the literature. 
These three contributions have different physical origins 
and symmetry requirements. Moreover, they exhibit dif-
ferent dependence on scattering time: J injection is propor-
tional to the scattering time τ , while J shift and J anomalous 
have well-defined DC values even in the absence of scat-
tering [193]. Roughly speaking,

where ω is the light frequency [194]. Hence, the injec-
tion current dominates in the high-frequency or 

(44)J = J injection + J shift + J anomalous,

(45)
|J injection|/|J shift| ∼ |J injection|/|J anomalous| ∼ ωτ ,

weak-scattering regime, while the shift or anomalous 
current dominates in the low-frequency or strong-scat-
tering regime.

From a practical perspective, converting light to elec-
tricity is crucial for clean energy, imaging, communi-
cations, and chemical and biological sensing. For this 
purpose, the photogalvanic effect is of interest because it 
can potentially overcome the extrinsic limitations of con-
ventional approaches. For example, traditional solar cells 
make use of the built-in electric fields in p-n junctions 
to generate photocurrent; however, their efficiency is 
bounded by the Shockley-Queisser limit due to the con-
straint of detailed balance [195]. Thermoelectric devices 
utilize the optically induced thermal gradients to produce 
currents via the Seebeck effect; however, they require a 
careful balance of the optical, electronic, and thermal 
material properties. The photogalvanic effect provides an 
important alternative: It has an ultrafast response with 
fewer limitations on efficiency or maximum open-circuit 
voltage [196].

The photogalvanic effects were primarily observed in 
ferroelectric insulators and semiconductors [192]. How-
ever, in these materials, the photogalvanic effects are 
usually too weak to be technically relevant. Moreover, 
the photogalvanic effects are typically restricted to a nar-
row range of light wavelengths. For the practical usage of 
photogalvanic effects, it is crucial to search for materials 
that overcome these limitations.

Weyl semimetals can be ideal material candidates for 
this purpose. Recent studies show that noncentrosym-
metric Weyl semimetals can exhibit a much stronger 
photogalvanic effect than conventional materials due 
to the large Berry curvature [188, 197]. The operation is 
broadband since Weyl semimetals exhibit zero bandgap 
and linear dispersion [198, 199]. Moreover, the carriers 
in Weyl semimetals can exhibit high mobility; the fast 
motion of carriers also contributes to the ultrafast and 
giant photocurrent response [200]. Interestingly, Weyl 
semimetals exhibit topological features in all three con-
tributions of photocurrents [184].

To compare the strength of photogalvanic effects in dif-
ferent materials, one calculates the so-called Glass coef-
ficient G defined by [192, 201]:

where j is the photocurrent density, α is the absorption 
coefficient, and I is the incident intensity. Thus G meas-
ures the generated photocurrent per absorbed power 
with a unit [cm/V]. Fig. 9 shows the measured and calcu-
lated Glass coefficients for various ferroelectric materials, 
together with the measured data for the Weyl semimetal 
TaAs. Notably, TaAs exhibits a nearly one order of 
magnitude larger response than any other materials. 

(46)j = GαI ,
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Moreover, TaAs enables a broadband response even in 
the mid-IR wavelengths, a regime that is important for 
thermal, chemical, and biological sensing.

Below we discuss the three contributions of photo-
currents in Weyl semimetals. For each contribution, we 
first provide a qualitative picture of the process in gen-
eral solids to explain its physical origin and symmetry 
requirement. Then we discuss its manifestation in Weyl 
semimetals. We point to relevant references for detailed 
quantitative analysis.

First, we discuss the injection current. Injection cur-
rents arise in a crystal that lacks certain symmetries, 
which give rise to phase differences between transition 
amplitudes associated with different polarizations of light 
[202]. When the crystal is excited with elliptically polar-
ized light, the different excitation pathways for horizontal 
and vertical linear polarizations lead to an interference 
effect. This results in an asymmetric population in the 
wavevector space and thus generates a current (Fig. 10a). 
The current flips sign when the helicity of light changes 
sign. Because it is generated only with elliptically polar-
ized light, the injection current is also called “circular 
photocurrent” [203].

The injection current requires the breaking of inversion 
symmetry. But this is not sufficient. Detailed symmetry 
analysis [193] shows that among the 21 crystal classes 
that lack inversion symmetry, 18 classes can support 
injection current; the exceptions are 6̄m2 , 6̄ , and 4̄3̄m 

[193]. For example, GaAs belongs to 4̄3̄m , hence cannot 
support injection current.

In a Weyl semimetal, the injection current can occur 
via asymmetric interband excitations near each Weyl 
cone (Fig.  10b). Each Weyl node produces an injection 
current that depends on its chirality and tilt, which can 
be decomposed as [188]:

where (n) denotes the n-th Weyl cone, J (n)0  changes sign 
only for opposite tilts, and J (n)χ  changes sign only for 
opposite chirality. The total injection current is then the 
sum of contributions from all the Weyl cones.

Next, we discuss the symmetry constraints. When 
there is inversion symmetry, a Weyl node at k is related to 
another one at −k with opposite tilt and opposite chiral-
ity. When there is time-reversal symmetry, a Weyl node 
at k is related to another one at −k with opposite tilt but 
the same chirality. Combining these symmetry consid-
erations with Eq.  (47), we conclude that in centrosym-
metric Weyl semimetals, both J 0 and Jχ are canceled; 
the total injection current is zero as expected (Fig. 10c). 
In noncentrosymmetric Weyl semimetals with time-
reversal symmetry, J 0 are canceled while Jχ can survive; a 
minimal number of two pairs of Weyl nodes can produce 
a nonzero response 2(Jχ − J ′χ ) (Fig. 10d). In Weyl semi-
metals without any symmetry, both J 0 and Jχ can survive 

(47)J (n) = J
(n)
0 + J (n)χ ,

Fig. 9 Glass coefficients. Measured (circles) and calculated (lines) Glass coefficients for various ferroelectric materials. The Weyl semimetal TaAs (blue 
square) exhibits a nearly one order of magnitude larger response due to its anomalous Berry curvature. TaAs works in the technically important 
mid-infrared regime due to its gapless nature. Figure is reproduced with permission from Ref. [197]. Copyright 2019 Springer Nature
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[188]. These discussions confirm the general symmetry 
analysis above from a different microscopic perspective.

The injection current in Weyl semimetals has been 
investigated both theoretically [185, 187, 188, 190, 204–
207] and experimentally [186, 208, 209]. In Ref. [186], 
Ma et  al.  report the experimental observation of the 
injection current in TaAs. They use a mid-infrared scan-
ning photocurrent microscope (Fig.  10e) equipped with 
a CO2 laser with wavelength �CO2 = 10.6µm and energy 
�ω = 117meV . This photon energy is chosen to induce 
the desired interband transitions near the Weyl nodes. 
The TaAs sample is purposedly filed down to show a 
clean surface with its normal direction along the a ([100]) 
axis of the crystal (Fig. 10f ). The sample is kept at a low 
temperature T ≈ 10K to increase the scattering time τ , 
which is crucial to observe the shift current [see Eq. (45)]. 

Light is focused and normally incident on the sample, 
i.e., along the a axis. Its polarization is controlled by the 
rotation angle θ of the quarter-wave plate. In Fig. 10g, the 
pink, black, and blue data points show the photocurrent 
along the b axis when the laser is focused on the pink, 
black, and blue dots in Fig.  10f, respectively. When the 
laser is focused near the sample’s center (the black dot), 
the photocurrent fits well to a cosine function of θ : It 
reaches the maximum for right circularly polarized light, 
the minimum for left circularly polarized light, and zero 
for linearly polarized light. When the laser spot is moved 
horizontally to the blue and pink dots, the corresponding 
photocurrents exhibit the same polarization dependence 
but with an additional, polarization-independent shift. 
These data reveal two distinct mechanisms for photocur-
rent generation. The polarization-dependent component 

Fig. 10 Injection current. a Scheme of injection current via interband absorption involving different polarization component Eh (horizontal) and 
Ev (vertical). b The injection current from a single Weyl cone depends on its chirality and tilt. c, d Injection currents in Weyl semimetals. Each Weyl 
node produces an injection current with chirality-independent ( J0 ) and chirality-dependent ( Jχ ) components. c Inversion symmetry relates two 
Weyl nodes with opposite tilt and opposite chirality, leading to the cancellation of photocurrents. IC: the inversion center. d Time-reversal symmetry 
relates two Weyl nodes with opposite tilt but the same chirality. Two pairs of Weyl nodes give rise to an overall injection current 2(Jχ − J

′
χ ) . TRIM: 

the time-reversal invariant momentum. e–g Experimental observation of the injection current in the Weyl semimetal TaAs. e Setup scheme. f A 
photograph of the sample. a, b, c denote the crystal axes. Scale bar: 300µm . g Polarization-dependent photocurrents at T = 10K measured along 
the b direction with the laser focused on the pink, black and blue dots in f. Figures are reproduced with permission from c, d Ref. [188], Copyright 
2017 American Physical Society; e–g Ref. [186], Copyright 2017 Springer Nature
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corresponds to the injection current. The polarization-
independent component arises from the photo-thermal 
effect [210–212]: Because the sample and contact have 
different thermopower, a current is generated by the 
laser-induced temperature gradient. Such an interpreta-
tion is further supported by additional experiments [186].

Second, we discuss the shift current. Shift currents 
arise from a coordinate shift accompanying the interband 
photoexcitation of electrons [213]. It occurs because the 
real-space center of charge for the valence bands differs 
from that for the conduction bands. As light is absorbed 
and electrons transit from the valence to conduction 
bands, there will be a motion of charge. If the crystal 
has low enough symmetry and the light polarization is 
appropriate, there will be a net current due to the “shift” 
of the center of charge [202]. The shift is on the order of 
a bondlength, and occurs on femtosecond time scales 
[193]. A more rigorous treatment of the shift current 
requires the modern theory of electric polarization [29] 

and the formalism of localized Wannier functions [214, 
215].

As an illustration, we discuss the shift current in the 
intrinsic semiconductor GaAs [202]. Fig.  11a and  11b 
show the electron density of GaAs for the Ŵ electrons in 
the valence and conduction bands, respectively. They can 
be viewed as snapshots before and after the photoexcita-
tion. Electrons at the top of the valence band ( Ŵ point) 
are localized around the As atoms (Fig. 11a). During the 
photoexcitation, the crystal absorbs photons of energy 
larger than the bandgap to populate the states near the 
bottom of the conduction band (also Ŵ point). Now elec-
trons have relocated closer to the Ga atoms (Fig.  11b). 
Depending on the light polarization, the electron density 
evolves differently to reach the excited state. For exam-
ple, if the electric field is polarized along the [100] direc-
tion, an electron from the As atom can move towards any 
one of its four nearest neighboring Ga atoms with equal 
probability, generating no net current. If the polarization 

Fig. 11 Shift current. a, b Electron density in the [110] plane of GaAs at Ŵ point for a the highest valence band, and b the lowest conduction 
band. c–f Experimental observation of the shift current in the Weyl semimetal TaAs. c Setup scheme. The polarization is controlled via rotation 
of the quarter-wave plate (QWP). d False colored scanning electron microscopy (SEM) image of a microscopic TaAs (purple) device with gold 
(yellow) contacts. e Polarization dependence of the thermal ( Ja

thermal
 ) and shift ( Ja

shift
 ) photocurrent contributions. The radius and angle of the polar 

plot correspond to the magnitude of the photocurrents and the angle ( φ ) the fast axis of QWP makes with the crystal a axis, respectively. These 
responses exhibit out-of-phase minima and maxima due to the different electric field combinations. f Measured power dependence of QWP 
angle-independent (D), fourfold shift ( Ls ), and photothermal ( Lc ) terms. The dependence is linear as expected from the generation mechanisms of 
the shift and photothermal current. Figures are reproduced with permission from a, b Ref. [202], Copyright 2006 American Physical Society; c–f Ref. 
[197], Copyright 2019 Springer Nature
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is along the [111] direction, an electron from the As atom 
will move primarily towards its closest neighboring Ga 
atom in the [111] direction, generating a net current 
[202].

The shift current requires the breaking of inversion 
symmetry. But, again, this is not sufficient. Detailed sym-
metry analysis [193] shows that among the 21 crystal 
classes that lack inversion symmetry, 20 classes can sup-
port the shift current; the only exception is 432. Thus the 
shift current exists in GaAs and other zinc-blende ( ̄43̄m ) 
semiconductors [216]. Different from the injection cur-
rent, the shift current can be generated with linearly 
polarized light.

The shift current in Weyl semimetals has been inves-
tigated both theoretically [184, 204] and experimentally 
[197, 217]. In Ref. [197], Osterhoudt et  al.  report the 
experimental observation of the shift current in the Weyl 
semimetal TaAs. Their setup is similar to that in Fig. 10e: 
a photocurrent microscope equipped with a CO2 laser, 
where the light polarization is controlled by the rotation 
angle φ of the quarter-wave plate (Fig.  11c). Their sam-
ple is different from the bulk crystal in Fig. 10f: The TaAs 
sample is fabricated into a microscopic device (Fig. 11d) 
with a small area (20 times smaller than the laser spot) 
and a small thickness (only three times the penetration 
depth ∼ 250nm of the light). This design mitigates the 
resistive losses and thermal effects. The sample is kept at 
room temperature, hence the scattering time τ is short, 
and the shift current dominates over the injection current 
[see Eq. (45)]. Despite the careful design of the device, the 
photo-thermal effect cannot be eliminated. Fortunately, 
one can separate the photo-thermal effect from the 
shift current by their different polarization dependence. 
Detailed symmetry analysis shows that for the photocur-
rent measured along the a axis, the thermal contribu-
tion J athermal = D + Lc cos 4φ and the shift contribution 
J ashift = Ls sin 4φ (Fig.  11e). By fitting the φ-dependent 
photocurrent, one can obtain the parameters D, Lc , and 
Ls . Fig. 11f shows their measured values as functions of 
input power, which all exhibit linear dependence. This is 
as expected since both mechanisms of the shift current 
and the photo-thermal effect rely on the square of the 
electric field.

Third, we briefly discuss the anomalous current. The 
anomalous current arises from the anomalous velocity 
[218, 219] caused by the Berry curvature [29, 182, 220, 
221]. Similar to the injection current, the anomalous cur-
rent is generated only with elliptically polarized light, and 
changes sign when the helicity of light flips [194]. The 
anomalous current in Weyl semimetals was theoretically 
predicted but not experimentally observed yet. We refer 
readers to Ref. [194] for detailed theoretical analysis.

Finally, we point out that the Fermi arc states may 
induce additional contribution to the photocurrent gen-
eration. See Refs. [222, 223] for more details.

4.2.2  Orbital angular momentum detection
Light can carry orbital angular momentum (OAM) [224]. 
The OAM manifests as a helical wavefront with an azi-
muthal phase distribution eimφ where m is the mode 
number and φ is the azimuthal angle. The OAM modes of 
light can encode information. However, direct detection 
of OAM by the photocurrent mesurement is challenging. 
This is because most types of photocurrents are sensitive 
only to optical intensity, not to optical phase.

In Ref. [225], Quienteiro et  al.  propose a new mecha-
nism for the generation of photocurrent, called the 
orbital photogalvanic effect. In this case, the incident 
light can transfer its OAM and energy simultaneously to 
the electrons. This process is similar to the photon drag 
effect [226], where the linear momentum of absorbed 
photons is transferred to electrons. Because the optical 
phase varies in the azimuthal direction, it induces a spa-
tial imbalance of excited carriers, producing a net current 
flowing either along or perpendicular to the helical phase 
gradient. The generated photocurrent is proportional to 
the OAM; when the OAM reverses signs, the photocur-
rent also flips direction.

In Ref. [9], Ji et  al.  utilize the orbital photogalvanic 
effect to enable direct on-chip electric readout of OAM. 
They fabricate electrodes of various shapes on WTe2 
for use as photocurrent detectors (Fig.  12a). WTe2 is a 
room-temperature Weyl semimetal with broken inver-
sion symmetry. It is an ideal material for observing the 
orbital photocurrent because it has large nonlinear opti-
cal susceptibilities and certain symmetries that forbid 
the photocurrents of other types. In the experiment, 
Ji et  al.  observe that the photocurrent displays steplike 
changes with different OAM. Such a detector can be 
exploited in future photonic circuits for optical com-
munications. In Ref. [10], Lai et  al.  demonstrate the 
generation of orbital photocurrents in the mid-infrared 
wavelengths with another Weyl semimetal TaIrTe4.

4.2.3  Second harmonic generation
Second harmonic generation is another important sec-
ond-order nonlinear optical effect. It refers to the genera-
tion of photons with twice the frequency of the incident 
light. Recent works [11, 227] show that noncentrosym-
metric Weyl semimetals can exhibit strong second har-
monic generation.

In Ref. [11], Wu et  al.  reveal giant second harmonic 
generation in the Weyl semimetals TaAs, TaP, and NbAs. 
These materials belong to the point group 4mm, which 
has a unique polar (z) axis along the [001] direction. 
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Symmetry analysis shows that second harmonic gen-
eration is allowed when the incident electric field has a 
nonzero z-component. Fig.  12b depicts the schematic 
setup. The incident pulses of 800nm wavelength are 
focused at near-normal incidence on the (112) surface 
of the sample. The generated second-harmonic light is 
detected in the reflection. The polarization of the inci-
dent light and the second-harmonic light are controlled 
by two sets of polarizers and waveplates, referred to as 
the generator and the analyzer, respectively. Angles θ1 
and θ2 denote the angles of the linear polarization plane 
after the generator and the analyzer, respectively, with 
respect to the [1, 1,−1] crystal axis. Fig.  12c shows the 
normalized second harmonic intensity as a function of 
θ1 when θ1 = θ2 at 20K , while the inset shows the polar 
plot. The data is consistent with the symmetry analysis 
and can be fitted well with the theoretical prediction. The 
second harmonic signal is highly anisotropic and sensi-
tive to the incident polarization: It reaches the maxi-
mum at θ1 = 0◦ or 180◦ when the electric field is along 
the [1, 1,−1] direction and has the largest z-component; 
it reaches the minimum at θ1 = 90◦ or 270◦ when the 
electric field is along the [1,−1, 0] direction and has zero 
z-component. The second harmonic signal is giant: The 

second-order optical susceptibility χ(2) has the largest 
component of 7200pmV−1 , which is larger by almost 
one order of magnitude than the value in the archetypal 
electro-optic materials GaAs ( 700pmV−1 ) and ZnTe 
( 900pmV−1 ), even when measured at wavelengths where 
their response is the largest. In fact, such a value is larger 
than then reported in any crystal. In Ref. [227], Patankar 
et  al.  further investigate the physical origins of such a 
giant second harmonic generation in TaAs.

From a practical perspective, Weyl semimetals are not 
optimal for frequency-doubling applications in the visible 
regime because of their strong absorption. However, they 
are promising materials for terahertz generation [228] 
and optoelectronic devices such as far-infrared detectors 
because the loss is lower at these longer wavelengths.

4.2.4  Inverse Faraday effect
The inverse Faraday effect is the reverse of the Faraday 
effect. Recall that the Faraday effect refers to the polari-
zation rotation of light induced by a static magnetization 
along the light propagation direction [119]. Correspond-
ingly, the inverse Faraday effect refers to the generation 
of static magnetization induced by circularly polarized 

Fig. 12 Some nonlinear optical effects in Weyl semimetals. a Direct detection of light orbital angular momentum. b, c Second harmonic 
generation. b Setup scheme. c Second harmonic signal as a function of incident polarization angle. d Inverse Faraday effect. e, f High harmonic 
generation. e Scheme. f High harmonic spectrum. Figures are reproduced with permission from a Ref. [9], Copyright 2020 American Association for 
the Advancement of Science; b, c Ref. [11], Copyright 2017 Springer Nature; d Ref. [239]; e, f Ref. [240]
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light propagating inside the material (Fig.  12d) [229, 
230]. In this case, the angular momentum from an oscil-
lating electric field E(t) is transferred into the magnetic 
moment of electrons, leading to a static magnetization 
M ∝ E(ω)× E∗(ω) . The inverse Faraday effect is a non-
linear phenomenon [231]. It does not require absorption 
but is rather based on a Raman-like coherent optical scat-
tering process. Consequently, this effect is non-thermal 
and takes place on a femtosecond timescale. The laser-
induced magnetization can be used for ultrafast control 
of magnetic devices [232, 233]. It can also cause the Fara-
day rotation for a subsequent probe light, which induces a 
matter-mediated light-light interaction.

Recent works [234–238] show that Dirac and Weyl 
semimetals can exhibit a strong inverse Faraday effect 
due to their unique carrier transport properties and 
strong spin-orbit coupling. For example, in Ref. [236], 
Tokman et al. estimate that in a Weyl semimetal with n 
Weyl nodes and a Fermi energy of 100meV , an incident 
pump light with an electric field 10kV/cm at a frequency 
1THz can induce a magnetization that causes the Faraday 
rotation parameter α ≈ 6.6n3/2 rad/cm for a probe light. 
Such a value is two orders of magnitude larger than that 
obtained in typical ferrites [233].

In Ref. [239], Liang et  al. propose an unconventional 
mechanism of inverse Faraday effect in Dirac and Weyl 
semimetals, referred to as the “axial magnetoelec-
tric effect”. As we discussed above, in the conventional 
inverse Faraday effect, static magnetization is generated 
through dynamical electromagnetic fields. In contrast, 
in the axial magnetoelectric effect, static magnetization 
is generated through dynamical axial gauge fields. Such 
effective gauge fields can be generated in a Dirac or Weyl 
semimetal via dynamical deformations (sound). They 
interact with electrons similarly to the usual electromag-
netic fields but with different signs for different chirali-
ties (see Ref. [4] for an introduction to axial gauge fields). 
In the axial magnetoelectric effect, the angular momen-
tum is transferred from the axial or pseudoelectric field, 
conventionally denoted as E5(t) , into the magnetic 
moment of electrons, leading to a static magnetization 
M ∝ E5(ω)× E∗

5(ω) . The synthetic nature of the axial 
gauge fields means that one can induce magnetization in 
Dirac and Weyl semimetals using phonons without any 
electromagnetic fields.

4.2.5  Higher‑order nonlinear effects
Weyl semimetals can also exhibit higher-order nonlinear 
optical effects, such as four-wave mixing, optical Kerr 
effect, and high-harmonic generation. These nonlinear 
effects are expected to be strong, especially at long wave-
lengths, due to the linear dispersion and high mobility of 
the Weyl fermions. Moreover, these effects may exhibit 

nontrivial features due to the anomalous Berry curvature 
associated with the Weyl nodes.

In Ref. [12], Almutairi et  al.  derive the third-order 
nonlinear optical conductivity of Weyl semimetals in 
the long-wavelength limit and calculate the intensity of 
the nonlinear four-wave mixing signal. The calculated 
nonlinear generation efficiency is surprisingly high for a 
lossy material, of the order of several mW per W3 of the 
incident pump power. This value is many orders of mag-
nitude higher than in conventional nonlinear materials 
[191]. Optimal conditions for the four-wave mixing are 
realized in the vicinity of bulk plasma resonance. This 
work indicates that ultrathin Weyl semimetal films of the 
order of skin depth in thickness can find applications in 
compact nonlinear optoelectronic devices.

In Ref. [13], Cheng et  al.  derive the analytic expres-
sions for linear and third-order optical conductivities 
of Dirac and Weyl semimetals, and compare the results 
with those of two-dimensional Dirac materials such as 
graphene. The details of the third-order conductivity are 
discussed for third-harmonic generation, the Kerr effect 
and two-photon carrier injection, parametric frequency 
conversion, and two-color coherent current injection. 
In contrast with two-dimensional materials, the three-
dimensional Dirac and Weyl semimetals allow for adjust-
ing the nonlinear signals by tuning the sample thickness. 
Thus, one can envision broad applications of such mate-
rials in nonlinear photonic devices.

In Ref. [240], Lv et  al.  report the experimental obser-
vation of high-harmonic generation in Weyl semimetal β
-WP2 . High-harmonic generation in solids has only been 
discovered recently [241–244]. Recent works [245, 246] 
report efficient high-harmonic generation from topologi-
cal materials. Moreover, Refs. [247, 248] show that the 
polarimetry of high-harmonic emission from solids can 
be used to directly retrieve the Berry curvature. In Lv’s 
experiment, both odd and even orders of high-harmonic 
emissions are observed (Fig.  12f ). The high-harmonic 
spectrum extends into the vacuum ultraviolet region 
(190nm, 10th order) even under fairly low femtosec-
ond laser intensity ( ∼ 0.29TW/cm2 ). It is interpreted 
that odd-order harmonics come from the Bloch oscilla-
tion, while even-order harmonics arise from the effec-
tive Lorentz force due to the Berry curvature (Fig. 12e). 
By analyzing the crystallographic orientation-depend-
ent high-harmonic spectra, they further quantitatively 
retrieve the electronic band structure and Berry curva-
ture of β-WP2.

4.3  Other effects
Of course, this tutorial review cannot cover all the 
reported optical phenomena and applications of Weyl 
semimetals. Here we list some examples of other 
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phenomena and applications not covered in this review: 
gyrotropic magnetic effect [249], photoinduced anoma-
lous Hall effect [250], nonlinear magneto-optical effects 
[185], topological frequency conversion [251], emergent 
electromagnetic induction [252, 253], tunable perfect 
absorption [254], unidirectional bound states in the con-
tinuum [255], transverse Kerker effect [256], and topo-
logical lasers [257].

5  Thermal photonic applications and devices
In this section, we survey various thermal photonic appli-
cations of Weyl semimetals. We discuss the nonrecipro-
cal thermal emitters in Sect. 5.1, the heat flux control in 
Sect. 5.2, and the control of Casimir force in Sect. 5.3.

5.1  Nonreciprocal thermal emitters
Conventional thermal emitters obey Kirchhoff’s law 
of thermal radiation [110, 258–262], which states that 
for a given direction, polarization, and frequency, the 

emissivity and the absorptivity are equal. However, 
Kirchhoff’s law is not a requirement of thermodynamics 
but a consequence of Lorentz reciprocity [117, 118, 263, 
264]. One can construct thermal emitters with nonrecip-
rocal materials featuring an asymmetric dielectric tensor. 
A conventional way to achieve the nonreciprocal effect 
is to use the nonreciprocal response of magneto-optical 
materials under an external magnetic field. The cyclotron 
motion of electrons breaks the microscopic reversibil-
ity [265, 266], resulting in different properties when the 
medium is absorbing and emitting light [267, 268]. Using 
this strategy, Zhu and Fan [269] proposed a photonic 
thermal emitter that can achieve complete violation of 
Kirchhoff’s law. However, since the nonreciprocal effect 
is quite weak in the thermal radiation wavelength range 
( ∼ 10µm at room temperature), the nonreciprocal emit-
ters require a very large external magnetic field of 3T to 
operate. Later, Zhao et  al. [264] improved the photonic 
design and reduced the required magnetic field to 0.3T at 

Fig. 13 Thermal photonic applications. a A nonreciprocal thermal emitter based on a magnetic Weyl semimetal photonic crystal. b Dispersion 
of the nonreciprocal surface plasmon polaritons of the Weyl semimetal. The gray region is the light cone of the vacuum. The blue region denotes 
the continuum of bulk modes. The red region denotes the surface plasmons used for nonreciprocal thermal emission. The gray dashed lines 
denote the boundaries of the Brillouin zones. kF = EF/�vF is the Fermi wavevector. c Emissivity and absorptivity spectra in θ = 80◦ direction. d 
Persistent directional heat current in a many-body system, at the thermal equilibrium of temperature T. The spheres are made of magneto-optical 
materials, with a magnetic field applied perpendicular to the plane of the triangle. Magnetic Weyl semimetals can provide the same effects without 
a magnetic field. e The photon thermal Hall effect among four particles made of magnetic Weyl semimetals forming a square with C4 symmetry. 
A temperature gradient �T  between particles 1 and 2 along the x-axis induces a nonzero temperature difference between particles 3 and 4. f A 
radiative thermal router based on three spheres of Weyl semimetal nanoparticles: tuning the Weyl node separation of the center particle will guide 
the heat to flow in a different direction. Figures are reproduced with permission from (a‑c) Ref. [14], Copyright 2020 American Chemical Society; d 
Ref. [284], Copyright 2016 American Physical Society; e Ref. [290], Copyright 2020 American Physical Society; f Ref. [298], Copyright 2020 American 
Chemical Society
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the expense of reduced bandwidth of the nonreciprocal 
effect.

As we mentioned in Sect. 3.5, magnetic Weyl semimet-
als can exhibit much stronger nonreciprocal effects com-
pared to conventional magneto-optical materials. Such 
giant nonreciprocity persists at the temperature below the 
Curie temperature ( TC ) of the material [270]. Some of the 
known magnetic Weyl semimetals possess high Curie tem-
perature; for example, Co2MnGa has TC = 694K [270], 
and Ti2MnAl has TC > 650K  [271, 272]. These materials 
are ideal candidates for nonreciprocal thermal emission. 
In Ref. [14], Zhao et  al.  proposed a broadband thermal 
emitter based on magnetic Weyl semimetals that achieves 
near-complete violation of Kirchhoff’s law at room tem-
peratures. The structure is shown in Fig.  13a which sup-
ports nonreciprocal surface plasmon polaritons as shown 
in Fig.  13b. The emissivity and absorptivity of the emit-
ter show a significant difference as shown in Fig.  13c. 
Tsurimaki et  al.  investigated the effect of the Fermi-arc 
surface state and the number of Weyl nodes for Weyl sem-
imetal-based nonreciprocal thermal emitters [15, 16]. Wu 
et al. construct nonreciprocal thermal emitters using Weyl 
semimetal thin films [273–275]. Since the nonreciprocal 
effect is intrinsic to the materials, these thermal emitters 
do not require any external magnetic field.

Here we note that for a nonreciprocal thermal emitter, 
the emissivity and absorptivity in the same direction can 
be different; however, the angular distribution of emissiv-
ity and absorptivity can be still constrained by compound 
symmetries as revealed in Ref. [118]. The compound 
symmetry can be used to design nonreciprocal ther-
mal emitters with correlated patterns of emissivity and 
absorptivity [8]. Breaking the compound symmetries can 
remove such correlation constraints [118, 276].

The above-mentioned works primarily focus on lin-
ear polarized thermal radiation. It has been shown 
that unpatterned thermal emitters with nonrecipro-
cal responses could radiate thermal photons that carry 
a net spin angular momentum [277–279]. Khandekar 
et  al.  studied spin-resolved Kirchhoff’s laws in nonre-
ciprocal systems [280]. Since these thermal photons can 
carry nonzero spin angular momentum, the emission of 
such photons can result in a back-action torque on the 
thermal emitter [277, 281]. Maghrebi et  al.  discussed 
this fluctuation-driven torque for a topological insulator 
thin film out of thermal equilibrium with a cold environ-
ment [277]. Guo and Fan proposed a single-particle heat 
engine utilizing this effect [282].

5.2  Heat flux control
Radiative heat transfer plays an important role in pho-
ton-based energy conversion and thermal management 
systems [259, 283]. In traditional thermal systems, the 

radiative heat flux is driven by a nonzero temperature 
gradient, and the radiative heat transfer is reciprocal, 
indicating that when the temperatures of two bodies are 
exchanged, the magnitude of the heat flux transferred 
between them is unchanged. However, in systems that 
involve nonreciprocal materials, photons can flow under 
zero temperature gradient, and radiative heat transfer 
could be nonreciprocal.

In Ref. [284], Zhu and Fan reported the existence of a 
persistent photon heat current in a nonreciprocal multi-
body system even without a temperature gradient. As 
shown in Fig.  13d, the arrows indicate the net heat flux 
direction when the three magneto-optical spheres are at 
the same temperature. Later, the persistent heat current 
feature was also reported within a single nonreciprocal 
body or cavity [281, 285, 286]. This phenomenon is closely 
related to the thermal Hall effect [287, 288]. In Ref. [289], 
Ben-Abdallah reported that with an external magnetic 
field, nonzero heat flux is induced in the direction that is 
perpendicular to the temperature gradient between mag-
neto-optical spheres, as illustrated in Fig. 13e. In Ref. [290], 
Ott et al. reported the same phenomenon in a multi-body 
system made of magnetic Weyl semimetals without the 
need for an external magnetic field.

Optical nonreciprocity can also enable efficient heat 
rectification [291], as reported in Refs. [292–294]. These 
thermal diodes rely on the nonreciprocal optical surface 
modes or bulk modes that induce an asymmetric ther-
mal resistance. When the temperature gradient alters 
direction, the magnitude of the thermal resistance also 
changes.

Magnetic Weyl semimetals also provide new opportu-
nities for controlling near-field radiative heat transfer due 
to their anisotropic optical properties and flexible tun-
ability. In Ref. [295], Tang et al. reported a twist-induced 
near-field heat modulator based on magnetic Weyl semi-
metals. The radiative resistance of the system experiences 
a significant change depending on the relative alignment 
of the directions of Weyl nodes separation in the thermal 
emitter and receiver. Other properties of Weyl semimet-
als such as the Fermi level, the number of Weyl nodes, 
the Weyl node separations [296], and external magnetic 
field [297, 298] can also be used to modulate near-field 
heat transfer. Using these effects, in Ref. [298], Guo 
demonstrated a radiative thermal router based on Weyl 
semimetals as illustrated in Fig. 13f. We also note several 
recent reports concerning the general properties of these 
radiative heat transfer systems involving nonreciprocal 
bodies [287, 288, 299–301].

5.3  Casimir force control
Besides the exciting opportunities in heat transfer, mag-
netic Weyl semimetals also provide an effective way 
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to control Casimir forces [302–305], especially to cre-
ate repulsive Casimir force, a long sought-after effect 
[306–308]. In Ref. [302], Wilson et  al.  reported repul-
sive Casimir force between semi-infinite magnetic Weyl 
semimetals when the separation of the two semimetals 
d ≤ 4c/σxy , where c is the speed of light in the vacuum, 
and σxy is the bulk hall conductivity of Weyl semimetals. 
Recently, it was shown that the equilibrium Casimir force 
in nonreciprocal systems can be used for propulsion 
[309]. We expect that an enhanced propulsion effect can 
be realized in magnetic Weyl semimetals.

6  Conclusion
Before concluding, we wish to provide our outlook about 
future works on the emerging topic of photonics based 
on Weyl semimetals. So far, most works on Weyl semi-
metals focus on novel physics. There are tremendous 
challenges and opportunities for engineers to make these 
physical effects practically useful. As examples, here we 
list a few tasks: (1) Synthesize high-quality and large-area 
Weyl semimetals. (2) Fabricate photonic devices based 
on Weyl semimetal materials. (3) Design photonic struc-
tures to enhance the light-matter interactions in Weyl 
semimetals. (4) Use photon management to enhance the 
light absorption and photocurrents in Weyl semimetals. 
(5) Tailor directional thermal emission using hyperbolic 
surface plasmon polaritons in type II Weyl semimetals. 
Certainly, many efforts need to be undertaken to con-
struct practical devices from Weyl semimetals.

In conclusion, we have provided an introductory review 
of Weyl semimetals in photonics. We covered the basic 
concept and optical properties of Weyl semimetals, and 
surveyed their emerging applications in photonic science 
and engineering. We discussed how the nontrivial topol-
ogy of Weyl semimetals leads to unusual optical proper-
ties. Photonics based on Weyl semimetals is an emerging 
topic with many open challenges and new opportunities. 
We believe that more exciting applications of Weyl semi-
metals will come up in the near future, and we wish this 
pedagogical review will benefit upcoming researchers 
exploring this new direction.
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